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Friedrich-Wilhelms-Universitaẗ, Dahlmannstr. 2, D-53113 Bonn, Germany

*S Supporting Information

ABSTRACT: The study of compound promiscuity is a hot topic in medicinal chemistry and
drug discovery research. Promiscuous compounds are increasingly identified, but the molecular
basis of promiscuity is currently only little understood. Utilizing the matched molecular pair
formalism, we have analyzed patterns of compound promiscuity in a publicly available small
molecule microarray data set. On the basis of our analysis, we introduce “promiscuity cliffs” as
pairs of structural analogs with single-site substitutions that lead to large-magnitude differences
in apparent compound promiscuity involving between 50 and 97 unrelated targets. No
substructures or substructure transformations have been detected that are generally responsible
for introducing promiscuity. However, within a given structural context, small chemical
replacements were found to lead to dramatic promiscuity effects. On the basis of our analysis,
promiscuity is not an inherent feature of molecular scaffolds but can be induced by small
chemical substitutions. Promiscuity cliffs provide immediate access to such modifications.

■ INTRODUCTION

Target promiscuity of small molecules is a much investigated
topic in medicinal chemistry, for several reasons. First, the
binding behavior of a promiscuous compound might be
associated with nonspecific binding events, as exemplified by
frequent hitters in biological screens.1 Second, specific
interactions of compounds with multiple (related or unrelated)
targets might give rise to polypharmacological behavior2−5 and
also provide a basis for drug repurposing.6,7 Third, increasing
evidence that many bioactive compounds do act on multiple
targets is beginning to change the single-target specificity
paradigm that has long governed drug discovery and design
efforts.8−11 Previous studies have mostly addressed compound
promiscuity through database mining,5,12,13 for example, by
identifying molecular scaffolds that are recurrent in promiscu-
ous compounds,12 or have focused on polypharmacology by
detecting new targets for existing drugs5 and by studying side
effects.13

Most information about compound promiscuity is currently
obtained from target annotations of bioactive compounds
collected from literature resources and stored in major
compound data repositories, such as ChEMBL.14 In addition,
promiscuity information might also be obtained by comparing
screening libraries across different bioassays available in
PubChem,15 although this information is limited at present
and principally confined to screening hits. Compound
promiscuity can experimentally be assessed by systematically
testing compound collections on arrays of diverse targets.
Unfortunately, such compound profiling data is currently rarely
available, at least in the public domain. However, there are a

few notable exceptions. For example, a data set recently
released by a group from Abbott Laboratories contains 1473
compounds with reported activities against 1−122 different
kinases from a representative sample of the kinome.16 While
this data set provides an excellent test case for large-scale SAR
exploration,17 it is not suitable for promiscuity analysis beyond
kinases. Furthermore, Schreiber and colleagues have reported a
small molecule microarray experiment that involved screening
of diverse compounds against a total of 100 sequence-unrelated
targets.18 The data released as a part of this investigation are
highly attractive for a systematic assessment of compound
promiscuity. In their original study, Clemons et al. assembled a
total of 15 252 compounds from three different sources
including compounds commercially available from medicinal
chemistry vendors (CCs), natural products (NPs), and
compounds originating from diversity-oriented synthesis
(DCs).18 These compounds were then printed on glass slides
through surface chemistry or noncovalent absorption and
tested against 100 sequence-unrelated soluble proteins. These
proteins were selected to represent a total of 145 different
InterPro domain classification types.19 Purified tacked proteins
were incubated on microarrays, and proteins bound to array
compounds were detected with labeled monoclonal antibodies.
These experiments produced a binary readout of activity, i.e., a
compound was classified as active against a target or not.
Hence, given the nature of microarray experiments, no exact
activity measurements were obtained. However, these data
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reflect binding patterns of compounds across a large array of
different targets and are thus suitable for the analysis of
compound promiscuity or specificity. Clemons et al.
determined the distribution of active compounds and analyzed
their data primarily considering measures of stereochemical and
shape complexity. They found that NPs generally yielded lower
hit rates than synthetic compounds and that both NPs and DCs
produced many more specific hits than CCs. Increasing
stereochemical and shape complexity generally favored
compound specificity, as one might anticipate. However, it
was also observed that 16% of CCs and 3% of DCs were
promiscuous in nature. Clemons et al. found that a
spirooxindole moiety was recurrent in the promiscuous subset
of DCs. By contrast, possible structural origins of promiscuity
among CCs did not become apparent in the course of the
analysis. However, a key finding has been that compounds with
apparent target selectivity were clearly enriched among DCs
compared to CCs.18

We have been interested in exploring compound promiscuity
from a structural perspective, encouraged by the microarray
analysis efforts of Schreiber and colleagues involving 100
sequence-unrelated targets. For a thorough structural assess-
ment, we have carried out a matched molecular pair (MMP)
analysis20 of all compounds in this data set. We reasoned that
MMPs might provide direct access to structural features
implicated in promiscuity because compounds forming an
MMP are only distinguished by the exchange of a single
substructure with limited size. On the basis of our analysis,
structural relationships between nonpromiscuous and highly
promiscuous compounds were established and substructures
were identified that induced large-magnitude promiscuity
within a given structural context. MMPs included compounds
with very large differences in the number of targets they were
active against, leading to the introduction of promiscuity cliffs.

■ MATERIALS AND METHODS
Compound Data. The publicly released microarray data set18

contained 15 252 compounds. Each compound was screened against
100 sequence-unrelated proteins. A total of 3433 compounds were
active against 1−97 proteins. Compound structures were examined
and standardized using the Molecular Operating Environment21 and
transformed into SMILES strings.22 Compounds with unique SMILES
strings were retained. Following these procedures, 15 042 compounds
remained for MMP generation including 6151 CCs, 6437 DCs, and
2454 NPs.
Matched Molecular Pair Analysis. An MMP is defined as a pair

of compounds that only differ by a structural change at a single
site,20,23 as illustrated in Figure 1. Compounds forming an MMP are
interconverted by the exchange of two substructures, which is termed a
chemical transformation.23 Accordingly, the MMP formalism is
descriptor-independent, metric-free, and chemically intuitive. For
example, it has been applied to characterize activity cliffs and
bioisosteric replacements.24−26 MMPs were generated using an in-
house implementation of the Hussain and Rea algorithm.23 Following
this approach, conserved core structures and variable substituents of
MMPs are stored as keys and values in an index table, respectively.
The size of an exchanged substructure (value) was limited to
maximally 13 non-hydrogen atoms and the size difference between
exchanged substructures to maximally eight non-hydrogen atoms. This
was done to restrict the size of exchanged fragments to chemically
meaningful replacements.26 In addition, MMP formation was further
restricted by the requirement that the core structure of a qualifying
compound (key) had to be at least twice the size of each exchanged
substructure (value). Application of these size restrictions previously
yielded chemically intuitive transformations in an MMP-based study of
activity cliffs.26 Furthermore, if several transformations generated the

same MMP, only the transformation comprising the smallest number
of atoms was retained. Following this protocol, MMPs were
systematically generated for all 15 042 microarray compounds.

All MMP and data-mining calculations were carried out with in-
house generated Java programs or KNIME27 protocols. An MMP-
based compound network was drawn with Cytoscape.28

Promiscuity Cliff Criteria. On the basis of our analysis, so-called
“promiscuity cliffs” were introduced by applying the following criteria:

(1) A compound pair formed a transformation size-restricted MMP
(as explained above).

(2) The number of activity annotations of the compounds forming
an MMP differed by at least 50 targets, hence indicating large-
scale differences in apparent promiscuity.

Accordingly, promiscuity cliffs represented closely related com-
pounds (mostly analogs) with limited structural variations, but large
differences in the number of target annotations. These cliffs were
systematically explored in the small molecule microarray data set.

■ RESULTS AND DISCUSSION
MMP Distribution. From the entire compound set, a total

of 30 954 nonredundant MMPs were generated that involved a
total of 8010 compounds and yielded 7256 different trans-
formations. Most of these transformations were represented by
a single MMP or small numbers of MMPs. Differences in the
number of target annotations between compounds forming an
MMP were evaluated. Therefore, for each MMP, the target
profiles of its two compounds were compared. The results are
reported in Figure S1 of the Supporting Information. Figure 2
reports the distribution of MMPs over increasing differences in
target numbers. Compounds forming 18 251 MMPs (∼59%)
did not differ in the number of targets they were active against.
Only 995 of these MMPs were active against the same number
of targets, but different targets (Figure S1 of the Supporting
Information). Hence, compounds comprising these 18 251
MMPs displayed the same or comparable levels of promiscuity
and were thus of low priority for our analysis.
By contrast, compounds in 829 (∼2.7%) and 126 MMPs

(∼0.4%) differed in their activity by 10 or more and 50 or more
targets, respectively, thus revealing structurally similar com-
pounds associated with unexpectedly large differences in
apparent promiscuity. As a pinnacle of these trends, 33
MMPs were identified in which compounds differed by 90 or
more targets. Taken together, these findings were rather
surprising. The 126 MMPs in which activity annotations of
compounds differed by 50 or more targets (highlighted in
Figure 2) were classified as promiscuity cliffs and subjected to
further analysis.

Figure 1. Matched molecular pairs. Two pairs of compounds forming
exemplary MMPs are shown. Exchanged fragments are colored in red
(left) or blue (right).
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Given currently available data, one cannot be certain that
binding to a large number of targets might always be specific
(in fact, in some instances, this might be unlikely), and which

role local concentration effects on arrays might play. Given that
compound promiscuity can have several origins and is
influenced by multiple factors, as discussed in the Introduction,
the analysis of apparent promiscuity on the basis of compound
activity profiles takes these factors implicitly into account. On
the basis of the original array data analysis reported by Clemons
et al., experimental variances were clearly limited to the level
expected for microarrays.
We also identified a total of 1146 MMPs that were formed

between an inactive compound and an active compound with at
least five target annotations, as reported in Figure S2 of the
Supporting Information. These MMPs contained compounds
active against 5−95 targets. Of these, 58 MMPs qualified as
promiscuity cliffs.

Molecular Properties. For 117 compounds involved in the
formation of the 126 promiscuity cliffs, four different
physicochemical properties were calculated using the Molecular
Operating Environment,21 including molecular weight, octanol/
water (o/w) partition coefficient (log P), and the numbers of
acidic and basic atoms. The distribution of molecular weight is
reported in Figure 3a. Compounds that were inactive or active
against less than five targets (left region of the plot) covered a
broad range, from about 400 to nearly 1000 Da. However, most
of the promiscuous compounds (right region) displayed a
narrower range. Figure 3b reports the correlation between the
changes in molecular weight and promiscuity for individual
cliffs. No obvious trends were observed.

Figure 2. MMPs and target annotations. MMP counts are reported
(on a logarithmic scale) for increasing differences in the number of
targets MMP-forming compounds were active against. On the
horizontal axis, “Δ target annotations” reports binned differences in
target numbers. For example, “1”, “10”, and “100” mean that
compounds forming an MMP differed by exactly 1, 6−10, and 91−
100 targets, respectively. Sections of the histogram that represent
MMPs with a difference of 50 or more targets are highlighted.

Figure 3. Distribution of molecular properties. For compounds involved in the formation of promiscuity cliffs, the distributions of their molecular
weight and o/w partition coefficient (log P) are shown in parts a and c, respectively, as a function of the number of target annotations. In these plots,
each dot represents a cliff-forming compound. In addition, for promiscuity cliffs, the distributions of the difference in molecular weight and log P are
shown in parts b and d, respectively, as a function of the difference in the number of target annotations (i.e., differences in the degree of
promiscuity). Here, each dot represents a compound pair forming a promiscuity cliff.

Journal of Medicinal Chemistry Article

dx.doi.org/10.1021/jm301292a | J. Med. Chem. 2012, 55, 10220−1022810222



Figure 3c shows the distribution of log P values. Analogously
to the observations made for molecular weight, inactive and
nonpromiscuous compounds also covered a broad range of log
P values. Most of the promiscuous compounds had a much
narrower range, i.e., from 6 to 10. On the other hand, in the
area of high lipophilicity (upper region of the plot), both
nonpromiscuous and promiscuous compounds were found.
Although many promiscuous compounds had relatively high
log P values (as one might expect), there was no detectable
correlation between the changes in lipophilicity and the
difference in promiscuity, as shown in Figure 3d.
In addition, the protonation states of these compounds were

analyzed by counting the numbers of acidic and basic atoms.
Nearly all compounds were neutral and only one compound
was found to be basic.
Transformations. The 126 MMPs representing promiscu-

ity cliffs encoded 38 unique transformations representing
different structural changes (as reported in Table S1 of the
Supporting Information). These transformations were ranked
according to the number of promiscuity cliffs they occurred in.
Table 1 reports the 10 top-ranked transformations. Individual
transformations were detected in up to 11 promiscuity cliffs.
Notably, eight of the top 10 transformations involved an
azocane ring. We calculated the total number of MMPs that
represented each of the 38 transformations (including

promiscuity cliffs and others). The results for the top 10
transformations are also reported in Table 1. The total number
of MMPs ranged from six to 148. We next determined whether
these transformations exclusively occurred in MMPs with large
target number differences, i.e., whether they represented
promiscuity-inducing transformations. Therefore, target num-
ber differences in all MMPs representing a given transformation
were analyzed. For the top 10 transformations, the minimal and
maximal differences in target numbers between MMP-forming
compounds and median values are reported in Table 1. For
example, for the top-ranked transformation, the median value
was 6.5 and MMPs with no target number differences existed.
In three other cases, median values of 1 were obtained. Hence,
many promiscuity cliff-containing transformations also occurred
in MMPs with small target number differences (or no
differences). None of the 38 transformations was found to
exclusively occur in promiscuity cliffs or other MMPs with large
target number differences. Hence, no chemical transformations
were detected that consistently induced large-magnitude
compound promiscuity.

Substructures. Following the analysis of transformations,
we ranked individual substructures involved in these trans-
formations according to the number of promiscuity cliffs in
which they occurred (excluding substructures comprising single
atoms). Table 2 shows the top five substructures that were

Table 1. Ranked Transformationsa

aThe top 10 transformations most frequently found in promiscuity cliffs are listed. The number of promiscuity cliffs and the total number of MMPs
containing each transformation are reported. In addition, the minimal (Min) and maximal (Max) differences in the number of target annotations
among MMP-forming compounds and median values are given.
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found in more than 10 promiscuity cliffs. Table S2 of the
Supporting Information reports all 37 qualifying substructures
involved in the formation of cliffs. These substructures were
diverse. Corresponding to observations made for trans-
formations, the azocane ring found in 68 promiscuity cliffs
was the top-ranked substructure in Table 2. The top five
substructures occurred in a total number of 90−272 MMPs and
84−1834 compounds. As also reported in Table 2, the number
of targets that compounds containing each substructure were
active against greatly varied and also yielded low median values.
In three instances, median values of zero were obtained,
indicating that at least half of the compounds containing a
highly ranked substructure were inactive. As expected on the
basis of our transformation analysis, no substructure was found
to exclusively occur in promiscuous compounds.
Promiscuous Compounds. All 117 compounds involved

in the formation of the 126 promiscuity cliffs were used to
generate a molecular network in which nodes represented
compounds and edges promiscuity cliffs, as shown in Figure 4a.
In this network representation, a number of “promiscuity hubs”
became apparent, i.e., compounds with a large number of target
annotations involved in the formation of multiple cliffs. It
should be noted that these compounds were not only highly
promiscuous, but also could be transformed into multiple
compounds with limited or no promiscuity through small
chemical modifications. The five most prominent promiscuity
hubs are highlighted in Figure 4a. These hubs were active
against more than 90 targets each and involved in the formation
of 9−11 promiscuity cliffs. Their structures are shown in Figure
4b. A characteristic feature of all five compounds was that they
contained both the azocane ring and spirooxindole rings (the
latter identified by Schreiber and colleagues18 as a single
promiscuity marker in DCs; vide supra). Because of the very
large number of targets that promiscuity hubs were active
against, it is conceivable that they might at least in part also
engage in nonspecific interactions (vide supra).

Promiscuity Cliffs. The co-occurrence of the azocane and
spirooxindole substructures in many highly promiscuous
compounds suggested the possibility that combinations of
substructures (rather than individual ones) might be pro-
miscuity determinants. This possibility could be directly
explored because the hubs we identified participated in the
formation of multiple promiscuity cliffs. Figure 5 shows
examples of prominent promiscuity cliffs containing the
azocane and spirooxindole substructures (additional examples
are provided in Figure S3 of the Supporting Information).
Comparison of cliff-forming compounds clearly revealed that
co-occurrence of the azocane and spirooxindole moieties was
not a major promiscuity determinant. In the promiscuity cliffs
in Figure 5a,b, removal of the azocane ring rendered highly
promiscuous compounds (with activity against 95 and 94
targets, respectively) inactive. All compounds in these cliffs also
contained the spirooxindole moiety. The cliff forming
compounds in Figure 5c both contained the azocane and
spirooxindole rings. However, a change in the position of an
aliphatic substituent from the para to ortho in the phenyl ring
at the lower right was sufficient to transform a highly
promiscuous compound into an inactive one. In Figure 5d,
the compound containing the para-substituted phenyl ring was
also highly promiscuous (i.e., active against 93 targets), whereas
the presence of a hydroxyl group at the same position
dramatically reduced promiscuity to five targets. However, the
ortho-substituted phenyl ring in a different structural context,
shown in Figure 5e, was highly promiscuous in contrast to the
corresponding analog in Figure 5c. Moreover, compounds
containing the para-substituted phenyl ring but different
substitutions at the spirooxindole moiety displayed very
different degrees of promiscuity (Figure 5e). Taken together,
these comparisons revealed a strong structural context
dependence of chemical modifications, leading to the formation
of promiscuity cliffs. There was no individual substructure or
transformation that consistently caused large-magnitude

Table 2. Ranked Substructuresa

aThe top five substructures most frequently found in promiscuity cliffs are listed. The number of promiscuity cliffs and the total number of MMPs
that contain each substructure are reported. In addition, the total number of compounds containing each substructure is reported. Furthermore, the
minimal (Min) and maximal (Max) number of target annotations among these compounds and median values are given.
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Figure 4. Promiscuity cliff network. (a) MMP-based compound network focusing on promiscuity cliffs. Nodes represent compounds, and edges
indicate promiscuity cliffs. Nodes are gray-scaled according to the number of target annotations using a continuous spectrum from black (0 targets;
inactive) to white (97 targets; most promiscuous). Five highly promiscuous compounds that were active against more than 90 targets and involved in
the formation of 9−11 cliffs are boxed and numbered. Their structures are shown in part b. For each compound, the number of targets it was active
against and the number of cliffs it was involved in are reported. For example, “95 | 10” means that the compound was active against 95 targets and
involved in the formation of 10 promiscuity cliffs.
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promiscuity effects and exclusively occurred in promiscuous
compounds.
What Do We Learn about Promiscuity from a

Medicinal Chemistry Perspective? On the basis of the
data available to us, it is not possible to conclude with certainty
to what extent highly promiscuous compounds engage in
specific and/or nonspecific interactions with targets. It is of

course unlikely that a compound might form specific
interactions with 90 or more diverse targets, even if the
interactions were clearly detectable under the given exper-
imental conditions. Hence, it is appropriate to consider
promiscuity from a phenotypic point of view in the context
of our analysis, given the requirement to analyze the data at face
value and avoid overinterpretation. However, it should be

Figure 5. Promiscuity cliffs. Shown are representative MMPs in which activity annotations of compounds differed by more than 80 targets. For each
compound, the compound ID and the number of targets it was active against are reported. The promiscuous compound of each cliff is shown on the
left and the exchanged fragments are colored red.
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noted that only a small fraction of the array compounds were
promiscuous in nature and that the formation of promiscuity
cliffs was a rare event, thus indicating that the microarray data
were suitable for a systematic analysis of promiscuity effects. As
we have shown, only a small fraction of MMPs generated from
the entire microarray data set combined compounds with
notable differences in the number of targets they were active
against. Taking this into account, the detection of cliffs in which
structurally similar compounds differed in their activity by 50 or
more targets is considered a striking finding, regardless of
underlying molecular mechanisms.
For medicinal chemistry, a number of findings reported

herein are of immediate relevance. It is evident that the MMP-
based approach provides a direct and chemically intuitive access
to small structural modifications, leading to large-magnitude
promiscuity effects. Previously, a number of structural frame-
works have been identified that were highly recurrent in
promiscuous compounds across different target families.12

However, it has remained largely unclear from a medicinal
chemistry perspective thus far whether certain molecular
frameworks carry an intrinsic likelihood of promiscuity and/
or might have frequent hitter character. After all, promiscuity is
determined for compounds, not their frameworks. Importantly,
the findings presented herein do not promote a framework-
centric view of promiscuity. Thus, for the evaluation and
prioritization of compound series for medicinal chemistry,
frameworks should not primarily be considered as an intrinsic
source of promiscuity and potential lack of compound
specificity. Rather, we demonstrate that small chemical
modifications can trigger large-magnitude promiscuity effects.
Importantly, these effects depend on the specific structural
environment in which these modifications occur. On the basis
of our analysis, substitutions that induce promiscuity in any
structural environment were not identified. Thus, in medicinal
chemistry, it is important to evaluate promiscuity for individual
compounds in series that are preferred from an SAR
perspective; observed specificity of certain analogs within a
series does not guarantee that others are not highly
promiscuous. Taken together, these findings further extend
our view of molecular origins of promiscuity, putting strong
emphasis on the context-dependence of promiscuity-inducing
structural modifications. The analysis of compounds in cliff
forming MMPs provided a focal point for the identification of
such chemical changes that might have otherwise not been
detected.

■ CONCLUSIONS
Herein, we have analyzed compound promiscuity on the basis
of small molecule microarray data involving ∼15 000
compounds and 100 sequence-unrelated targets. These micro-
array data provide a binary readout of compound activity and
are likely influenced, for example, by variance and local
concentration effects associated with printing of compounds on
solid surfaces by different mechanisms. Nevertheless, as clearly
indicated by the results of Clemons et al., who conducted the
microarray experiments, the data revealed meaningful binding
patterns and systematic trends concerning compound selectiv-
ity and, as demonstrated in our study, promiscuity. In the
current analysis, we have focused on identifying closely related
compounds with large difference in promiscuity, leading to the
introduction of promiscuity cliffs. From these compound pairs,
chemical modifications at individual sites have become apparent
that led to promiscuous binding behavior. Chemical changes

were identified that caused large-magnitude promiscuity effects.
We have shown that no individual substructure or trans-
formation involved in these effects exclusively occurred in
promiscuous compounds. Rather, they were distributed across
compounds with different levels of promiscuity or no apparent
promiscuity. On the basis of currently available data,
promiscuity is not an inherent feature of certain structural
frameworks. However, we have shown that chemical
modifications could trigger promiscuity within specific
structural contexts. Exemplary promiscuity cliffs have revealed
that similar substitutions in different structural environments
can lead to promiscuity effects of different magnitude, or even
opposite effects (i.e., increase vs reduction in target numbers).
On the basis of our analysis, small structural modifications of
nonpromiscuous compounds can lead to substantial promiscu-
ity. However, these effects are structural-context-dependent.
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